
GitHub Integration Guide for Students

Phase 1: Getting Started with GitHub

Step 1: Account Setup

1. Visit github.com and create a free account

2. Choose a professional username (avoid special characters or numbers if possible)

3. Verify your email address through the confirmation email

4. Complete your profile with a professional photo and bio

5. Enable two-factor authentication for security

Step 2: Install Required Tools

1. Install Git on your computer:

Windows: Download from git-scm.com

Mac: Install via Homebrew (brew install git) or download from git-scm.com

Linux: Use package manager (sudo apt install git for Ubuntu/Debian)

2. Choose a code editor with Git integration:

Visual Studio Code (recommended for beginners)

GitHub Desktop (GUI alternative)

Command line (for advanced users)

Step 3: Configure Git Locally

Open terminal/command prompt and run:

Phase 2: Repository Setup and Organization

Step 4: Create Your Course Repository Structure

1. Main Course Repository:

Create a new repository named [course-code]-[semester] (e.g., CS101-Fall2024)

bash

git config --global user.name "Your Full Name"

git config --global user.email "your.email@example.com"

git config --global init.defaultBranch main

https://github.com/
https://git-scm.com/

Make it public for easy sharing with instructors

Initialize with a README.md file

2. Repository Structure:

Step 5: Clone Repository Locally

1. Copy the repository URL from GitHub

2. Open terminal in your desired local directory

3. Run: git clone [repository-url]

4. Navigate to the repository: cd [repository-name]

Phase 3: Daily Workflow Integration

Step 6: Establish a Consistent Workflow

1. Before starting work:

2. After completing work:

CS101-Fall2024/

├── README.md

├── assignments/

│ ├── assignment-01/

│ ├── assignment-02/

│ └── ...

├── practice-exercises/

│ ├── week-01/

│ ├── week-02/

│ └── ...

├── projects/

│ ├── midterm-project/

│ └── final-project/

└── notes/

├── lecture-notes.md

└── resources.md

bash

git pull origin main # Get latest changes

bash

Step 7: Commit Message Best Practices

Use clear, descriptive commit messages:

Add: Assignment 1 solution

Complete: Week 3 practice exercises

Fix: Bug in sorting algorithm

Update: README with project description

Refactor: Improve code structure in main.py

Phase 4: Advanced GitHub Features

Step 8: Branching for Different Work

1. Create branches for major assignments:

2. Merge back to main when complete:

Step 9: Using Issues for Task Management

1. Create issues for each assignment or project

2. Use labels like "assignment", "bug", "enhancement"

3. Reference issues in commit messages: "Fixes #3: Complete data structure implementation"

4. Close issues when work is completed

git add . # Stage all changes

git commit -m "Descriptive message" # Commit with clear message

git push origin main # Push to GitHub

bash

git checkout -b assignment-01

Work on assignment

git add .

git commit -m "Complete assignment 01"

git push origin assignment-01

bash

git checkout main

git merge assignment-01

git push origin main

Step 10: Collaboration Features

1. Fork repositories for group projects

2. Create pull requests for code reviews

3. Use GitHub Discussions for course-related questions

4. Star important repositories for quick access

Phase 5: Documentation and Presentation

Step 11: Create Comprehensive README Files

For each project folder, include:

Step 12: Portfolio Development

1. Pin important repositories to your profile

2. Create a profile README showcasing your work

3. Use GitHub Pages to host project demos

4. Maintain consistent commit history showing regular progress

Phase 6: Integration with Course Management

markdown

Project Name

Description

Brief description of what the project does

Requirements

- Programming language version

- Dependencies

- Installation instructions

Usage

How to run the program

Screenshots/Examples

Visual examples of the program running

Reflection

What you learned from this project

Step 13: Submission Workflow

1. Create release tags for final submissions:

2. Share repository links with instructors via:

Course management system

Email with specific commit hashes

Direct GitHub repository URLs

Step 14: Backup and Version Control

1. Regular commits ensure work is never lost

2. Multiple branches allow experimentation without risk

3. GitHub serves as cloud backup for all coursework

4. History tracking shows your learning progression

Best Practices and Tips

Organization Tips:

Use consistent naming conventions

Keep repositories organized with clear folder structures

Include .gitignore files for language-specific temporary files

Write meaningful commit messages

Collaboration Tips:

Comment your code thoroughly

Use pull requests even for solo projects to practice

Engage with classmates' repositories through stars and issues

Participate in code reviews

Professional Development:

Maintain an active commit history

Showcase your best work prominently

bash

git tag -a v1.0 -m "Assignment 1 final submission"

git push origin v1.0

Use GitHub's social features appropriately

Build a portfolio that demonstrates growth over time

Troubleshooting Common Issues

Git Command Issues:

Merge conflicts: Use git status to identify files, resolve manually

Forgot to pull: Use git pull --rebase origin main

Wrong commit message: Use git commit --amend -m "New message"

GitHub Access Issues:

Authentication problems: Set up SSH keys or use personal access tokens

Permission denied: Check repository visibility settings

Sync issues: Ensure local and remote repositories are connected properly

Getting Help

Resources:

GitHub's official documentation

Git tutorials and cheat sheets

Course instructor or teaching assistants

GitHub community forums

Stack Overflow for specific technical issues

Emergency Recovery:

GitHub keeps full history - previous versions are always recoverable

Use git log to find specific commits

Create issues on your repository to ask for help

Most problems can be solved without losing work

This guide provides a foundation for using GitHub effectively throughout your coursework. Start with

the basics and gradually incorporate more advanced features as you become comfortable with the

platform.

