GitHub Integration Guide fFor Students

Phase 1: Getting Started with GitHub

Step 1: Account Setup
1. Visit github.com and create a free account
2. Choose a professional username (avoid special characters or numbers if possible)
3. Verify your email address through the confirmation email
4. Complete your profile with a professional photo and bio

5. Enable two-factor authentication for security

Step 2: Install Required Tools

1. Install Git on your computer:
* Windows: Download from gjt-scm.com

e Mac: Install via Homebrew ((brew install git)) or download from git-scm.com

e Linux: Use package manager ((sudo apt install git) for Ubuntu/Debian)

2. Choose a code editor with Git integration:
¢ Visual Studio Code (recommended for beginners)

e GitHub Desktop (GUI alternative)

e Command line (for advanced users)

Step 3: Configure Git Locally

Open terminal/command prompt and run:

-
bash

git config --global user.name "Your Full Name"
git config --global user.email "your.email@example.com"

git config --global init.defaultBranch main

.

Phase 2: Repository Setup and Organization

Step 4: Create Your Course Repository Structure

1. Main Course Repository:

« Create a new repository named ([course-code]-[semester]) (e.g., (CS101-Fall2024))

https://github.com/
https://git-scm.com/

e Make it public for easy sharing with instructors

¢ |nitialize with a README.md file

2. Repository Structure:

Ve

CS101-Fall2024/
— README.md
— assignments/
| —assignment-01/
| —assignment-02/

|— practice-exercises/

| —week-01/
| —week-02/
F— projects/
| — midterm-project/
| L—Final-project/
L— notes/
— lecture-notes.md
L— resources.md

AN

Step 5: Clone Repository Locally
1. Copy the repository URL from GitHub

2. Open terminal in your desired local directory

3. Run: (git clone [repository—url])

4. Navigate to the repository: (cd [repository-name])

Phase 3: Daily Workflow Integration

Step 6: Establish a Consistent WorkFlow

1. Before starting work:

Ve

bash

git pull origin main

(.

2. After completing work:

P
bash

gitadd.
git commit -m "Descriptive message"

git push origin main

Step 7: Commit Message Best Practices

Use clear, descriptive commit messages:

(Add: Assignment 1 solution)

(Complete: Week 3 practice exercises)

[Fix: Bug in sorting algorithm]

(Update: README with project description)

(Refactor: Improve code structure in main.py)

Phase 4: Advanced GitHub Features

Step 8: Branching for Different Work

1. Create branches for major assignments:

Ve

bash
git checkout -b assignment-01
gitadd.

git commit-m "Complete assignment 01"

git push origin assignment-01

(.

2. Merge back to main when complete:

Ve

bash

git checkout main
git merge assignment-01
git push origin main

(.

Step 9: Using Issues for Task Management

1. Create issues for each assignment or project
2. Use labels like "assignment”, "bug"”, "enhancement”
3. Reference issues in commit messages: "Fixes #3: Complete data structure implementation”

4. Close issues when work is completed

Step 10: Collaboration Features

1. Fork repositories for group projects
2. Create pull requests for code reviews
3. Use GitHub Discussions for course-related questions

4. Star important repositories for quick access

Phase 5: Documentation and Presentation

Step 11: Create Comprehensive README Files

For each project folder, include:

-
markdown

Project Name

Description
Brief description of what the project does

Requirements
- Programming language version
- Dependencies

- Installation instructions

Usage
How to run the program

Screenshots/Examples
Visual examples of the program running

Reflection
What you learned from this project

g

Step 12: Portfolio Development
1. Pin important repositories to your profile
2. Create a profile README showcasing your work
3. Use GitHub Pages to host project demos

4. Maintain consistent commit history showing regular progress

Phase 6: Integration with Course Management

Step 13: Submission Workflow

1. Create release tags for final submissions:

Ve

bash

git tag-av1.0-m "Assignment 1 final submission"
git push origin v1.0

AN

2. Share repository links with instructors via:
e Course management system

e Email with specific commit hashes

e Direct GitHub repository URLs

Step 14: Backup and Version Control
1. Regular commits ensure work is never lost
2. Multiple branches allow experimentation without risk
3. GitHub serves as cloud backup for all coursework

4. History tracking shows your learning progression
Best Practices and Tips

Organization Tips:
e Use consistent naming conventions
» Keep repositories organized with clear folder structures
 Include .gitignore files for language-specific temporary files

e Write meaningful commit messages

Collaboration Tips:
e Comment your code thoroughly
e Use pull requests even for solo projects to practice
e Engage with classmates' repositories through stars and issues

e Participate in code reviews

Professional Development:
e Maintain an active commit history

e Showcase your best work prominently

e Use GitHub's social features appropriately

e Build a portfolio that demonstrates growth over time

Troubleshooting Common Issues

Git Command Issues:

* Merge conflicts: Use to identify files, resolve manually
 Forgot to pull: Use (git pull ~rebase origin main)

« Wrong commit message: Use (git commit --amend -m "New message")

GitHub Access Issues:

¢ Authentication problems: Set up SSH keys or use personal access tokens
e Permission denied: Check repository visibility settings

e Syncissues: Ensure local and remote repositories are connected properly

Getting Help

Resources:

¢ GitHub's official documentation

Git tutorials and cheat sheets

Course instructor or teaching assistants

GitHub community forums

Stack Overflow for specific technical issues

Emergency Recovery:
e GitHub keeps full history - previous versions are always recoverable
« Use(gitlog) to find specific commits
e Create issues on your repository to ask for help
e Most problems can be solved without losing work
This guide provides a foundation for using GitHub effectively throughout your coursework. Start with

the basics and gradually incorporate more advanced features as you become comfortable with the

platform.

